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WHAT THIS TALK IS ABOUT

HOW DO (NON)-INTEGRABLE SYSTEMS 
EQUILIBRATE AND THERMALIZE…?

…OR NOT, IN CASE OF  
MANY-BODY LOCALIZATION?



WHAT “WINDOWS” INTO PROBING THIS 
DO QUANTUM SIMULATORS PROVIDE?

WHAT THIS TALK IS ABOUT



CAN QUANTUM SIMULATORS SHOW A  
“QUANTUM ADVANTAGE”, AND IF SO…

…HOW COULD WE EVER FIND OUT?

WHAT THIS TALK IS ABOUT
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EQUILIBRATION

▸ Equilibration to time averages of local observables 
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EQUILIBRATION
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▸ Equilibration to time averages of local observables O

▸ Thermalization:  
“Form its own heat bath”

▸ Invoke eigenstate  
therm hypothesis (ETH)

tr\A(|eihe|) = |eihe|A ⇠ tr\A

✓
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Deutsch, Phys Rev A 43, 2046 (1991) 
Srednicki, Phys Rev E 50, 888 (1994)



▸ Deviations from time average  
 
 
 in terms of Renyi entropy

EQUILIBRATION
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1

1� ↵
log (tr(⇢↵))
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0
tr(⇢(t)O) = tr(!O)

Var(O,H, ⇢) := (hO(t)i �O)2  kOk2e�S2(!)
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▸ Systems equilibrate if “effective dimension”           is largeS2(!)
Reimann, Phys Rev Lett 101, 190403 (2008)  
Linden, Popescu, Short, Winter, Phys Rev E  79, 61103 (2009) 
Reimann, Kastner, New J Phys 14, 43020 (2012) 
Short, Farrelly, New J Phys 14, 013063 (2012) . 
Gogolin, Eisert, Rep Prog Phys 79, 56001 (2016)  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EQUILIBRATION
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BUT WHEN IS THE EFFECTIVE DIMENSION  
LARGE? A DIFFERENT TAKE…
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Wilming, Goihl, Roth, Eisert, arXiv:1802.02052



VOLUME LAWS AND ENTANGLEMENT ERGODICITY

▸ Generic eigenvectors         of local Hamiltonians* are expected to  
satisfy a volume law for the entanglement entropy
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he|⇤H⇤|ei⇤
N

= e*

A

S↵(⇢A(e)) ⇠ |A|

▸ Overwhelming numerical (and analytical) evidence
Rigol, Dunjko, Olshanii, Nature 452, 854 (2008)  
Fujita, Nakagawa, Sugiura, Watanabe, arXiv:1703.02993 
Lu, Grover, arXiv:1709.0878 
Huang, arXiv:1708.08607 
Vidmar, Hackl, Bianchi, Rigol, Phys Rev Lett 119, 020601 (2017) 
Lloyd, Pagels, Ann Phys 188, 186 (1988)  
Page, Phys Rev Lett 71, 1291 (1993)  

▸ Obviously, ETH implies sth much stronger

Wilming, Goihl, Roth, Eisert, arXiv:1802.02052

FOR WHAT VALUES OF     IS THIS MEANINGFUL?↵
▸ For            only ↵ > 1

▸ But then all Renyi entropies are equivalent   ▸        has overlap exponentially close to          with a product state1� ✏| ✏i

▸        fulfills a volume law for the von-Neumann entropy| ✏i

▸ All Renyi entropies for           are upper bounded by a constant↵ > 1



                                                  A system is EG, if there ex a positive function   ,     
such that for energy eigenvectors        with energy density   the conditions hold|ei⇤ e

⇤▸ For every sufficiently large lattice     there exists a subsystem  
such that the reduced state                                           fulfills 

▸ The function    is sufficiently well behaved
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⇤
(|eihe|⇤)

g

g

ENTANGLEMENT ERGODICITY

▸ Entanglement ergodicity:

S2(⇢A⇤(e)) � g(e)N

▸ Entanglement ergodicity:

A⇤

Wilming, Goihl, Roth, Eisert, arXiv:1802.02052

▸ 2-Renyi entropy taken for convenience 

▸ Entanglement ergodicity is stable under short evolution

▸ Is what many-body localization is not about



EQUILIBRATION FROM ENTANGLEMENT ERGODICITY

▸ Entanglement ergodicity: S2(⇢A⇤(e)) � g(e)N

A⇤

Wilming, Goihl, Roth, Eisert, arXiv:1802.02052

WHAT DOES THIS MEAN FOR EQUILIBRATION?



Inside                         ,exploit ergodicity[e� �, e+ �]

EQUILIBRATION FROM ENTANGLEMENT ERGODICITY

S2(⇢A⇤(e)) � g(e)N

A⇤

Wilming, Goihl, Roth, Eisert, arXiv:1802.02052

Bound overlaps of products  
with energy eigenstates | i

| iEnergy density of        
outside [e� �, e+ �]
Anshu, New J Phys 18, 083011 (2016).

High diagonal entropy for all Renyi entropies for all ↵ � 0

▸ Entanglement ergodicity:)
▸ Equilibration: For any state    in the same phase as a product, with 

energy density    , and a Hamiltonian with non-degenerate gaps in 
spatial dimension   , there exists constants      and                such that

⇢

e

C k(e) > 0

Var(O,H⇤, ⇢)  kOk2Ce�k(e)N/(⌫+1)

⌫



▸ Lesson: From (very plausible) entanglement  
ergodicity, general strong equilibration follows

LESSON

A⇤

Wilming, Goihl, Roth, Eisert, arXiv:1802.02052

▸ ETH



GAUSSIFICATION AND A COLD  
ATOMIC EXPERIMENT
In preparation



A

GAUSSIFICATION

Reduced states become Gaussian in time,  
even if initial states are highly correlated

▸ Quenched non-interacting systems Gaussify in time

Gluza, Krumnow, Friesdorf, Gogolin, Eisert, PRL 117 (2016)  
Cramer, Dawson, Eisert, Osborne, PRL100, 030602 (2008) 
Calabrese, Cardy, Phys Rev Lett 96, 136801 (2006)



GAUSSIFICATION

‣ Gaussification: If      

|tr(⇢AB)� tr(⇢A)tr(⇢B)|  C|A| |B|e�d(A,B)/⇠

‣ initial states have clustering correlations 

‣ the Hamiltonian is quadratic and free-particle ergodic

     

   then, for any local observable    , any          , there exists a relaxation time 
   independent of the system size such that for all 

   where      is a (possibly time-dependent) Gaussian state 
|tr(A(t)⇢)� tr(A(t)⇢G)| < "

A " > 0 trel
t 2 [trel, trec]

⇢G
Proof techniques: Lieb-Robinson bounds, Bernstein-Spohn blocking, fermionic Lindeberg central limit theorem

‣ True for all planar lattices, non-Gaussian initial state, bosons and fermions

A

Gluza, Krumnow, Friesdorf, Gogolin, Eisert, PRL 117 (2016)  
Cramer, Dawson, Eisert, Osborne, PRL100, 030602 (2008)



GREAT, BUT WHAT DO THE SECOND MOMENTS DO?

GAUSSIFICATION

A
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GAUSSIFICATION

‣ Free-particle ergodicity: A system is ergodic if there exists a time     
such that for all                   , the propagator is suppressed as  
 
 
for some  

‣
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GAUSSIFICATION

‣ Free-particle ergodicity: A system is ergodic if there exists a time     
such that for all                   , the propagator is suppressed as  
 
 
for some  

‣

t⇤

↵ > 0

t 2 [t⇤, cL]

)
▸ Always, for all translationally invariant local models*

* Under very mild assumptions, basically the dispersion  
   relation must not be flat and no points with  E00(p) = E000(p) = 0

Gluza,Eisert, Farrelly, in preparation

▸ Kuzmin theorem: Suppose         are real numbers and the  
gaps                               are (i) increasing and (ii) satisfy  
                            with           , then

�����

N�1X
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eian

�����  cot(�/4)  2⇡

�

(an)

�n = (an+1 � an)

�n 2 [�, 2⇡ � �] � > 0

|Wj,k(t)| < Ce�↵t



‣ Convergence to GGE: For generic free fermionic/bosonic TI and  
Hamiltonians and short range correlated states, one finds 
convergence to a Gaussian GGE,

k⇢A(t)� ⇢G(t)k1 = O(t�1)

GAUSSIFICATION

Largely generalizes beautiful work by Calabrese, Essler, Fagotti, PRL 106, 227203 (2011)

▸ No ambiguity in GGE (charges are const of motion)▸ Lesson: Get here the full picture of equilibration  
and GGE convergence, including large  
independence of initial conditions

A



EQUILIBRATION FROM ERGODICITY

A

CAN ONE EXPERIMENTALLY FIND GAUSSIFICATION?*

* Joerg Schmiedmayer,  
   Thomas Schweigler et al 



EXPERIMENTAL GAUSSIFICATION

▸ Yes, in the quantum field states of cold atoms on atom chips

▸ Density and phase quadratures (z) ⇠
p

nGP(z) + �⇢(z)ei�(z)

[�⇢(x),�(y)] = i�(x� y)



EXPERIMENTAL GAUSSIFICATION

▸ Observe Gaussification from higher moments

M =

P
z |W (4)(z)|P
z |Z(4)(z)|

Connected correlation function

Full correlation function

Schweigler, Gluza, Rauer, Eisert, Schmiedmayer, in preparation▸ Lesson: Gaussification can be observed, but  
only phase differences can be directly measuredHOW CAN ONE MEASURE THE “MISSING” QUADRATURES?

Schweigler, Gluza, Eisert, Schmiedmayer, in preparation



TOMOGRAPHY OF INACCESSIBLE QUADRATURES

▸ Evolution in effective non-interacting (of sine-Gordon) model
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TOMOGRAPHY OF INACCESSIBLE QUADRATURES

▸ Evolution in effective non-interacting (of sine-Gordon) model

H =

Z L

0
dz

✓
nGP(z)

4m
(@z�(z))

2 + g�⇢(z)2
◆

=
X

k>0

�
!k(�

2
k + �2k) + g��2

0

�

Gluza, Schweigler, Krumnow, Schmiedmayer, Eisert, in preparation



RECOVERY OF ALL QUADRATURES

▸ Make it a convex (SDP) recovery problem

‣ Evolve under  
effective model

Gluza, Schweigler, Krumnow, Schmiedmayer, Eisert, in preparation

‣ Find most likely density  
profile in 2-norm, under  
Heisenberg constraint

� + i� � 0

‣ Measure many  
phases in time slices



RECOVERY OF ALL QUADRATURES

▸ Make it a convex (SDP) recovery problem

‣ Evolve under  
effective model

Gluza, Schweigler, Krumnow, Schmiedmayer, Eisert, in preparation

‣ Find most likely density  
profile in 2-norm, under  
Heisenberg constraint

� + i� � 0

‣ Measure many  
phases in time slices

‣ Quasi-particle occupation



▸ Works very well: E.g., recurrences in quenched quantum systems

RECOVERY OF ALL QUADRATURES

Gluza, Schweigler, Krumnow, Schmiedmayer, Eisert, in preparation

Phase coherence 
as a function of  
time



QUENCHED COLD ATOMIC SYSTEMS ON ATOM CHIPS

▸ Lesson: Gaussification is observed; but equally interesting 
is a new window into cold atomic quantum simulators

▸ Quadratures in 1D bosons can be measured

▸ Consistent with interacting thermal state preparation

▸ Coming now: Entanglement following quenches

Gluza, Schweigler, Krumnow, Schmiedmayer, Eisert, in preparation



MBL AND THE ABSENCE OF 
THERMALIZATION
arXiv:1707.05181  
In preparation  



▸ Many-body localization: Interplay of disorder and interactions 

MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

▸ Some systems stubbornly refuse to thermalize



MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

▸ Anderson model: Particle hopping on a line under random potential
H =

X

j

(|jihj + 1|+ |j + 1ihj|+ fj |jihj|)

▸ Static localization: Most eigenstates have clustering correlations

E(supt|hn|e�itH |mi|)  c1e
�c2dist(n,m)▸ Dynamic localization:

▸ Many-body localization: Rich phenomenology, still a crime story



MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

Znidaric, Prosen, Prelovsek, PRB 77, 064426 (2008)  
Badarson, Pollmann, Moore, PRL 109, 017202 (2012) 

▸ Log-growth of entanglement



MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

▸ Some systems stubbornly refuse to thermalize

H =
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Bauer, Nayak, J Stat Mech P09005 (2013) 
Luitz, Laflorencie, Alex, arXiv:1411.0660 

▸ Matrix product, area-law 
eigenstates

Znidaric, Prosen, Prelovsek, PRB 77, 064426 (2008)  
Badarson, Pollmann, Moore, PRL 109, 017202 (2012) 

▸ Log-growth of entanglement

Brown, Goihl, Werner, Eisert, im preparation 

kA(t)� eitH
l
AAe�itHl

Ak  c
loc

e�µ(l+c2 log(t))

▸ Static localization follows from dynamical one

Friesdorf, Werner, Scholz, Brown, Eisert, Phys Rev Lett 114, 170505 (2015) 
In preparation (2018)



MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

▸ Some systems stubbornly refuse to thermalize
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▸ Matrix product, area-law 
eigenstates

Znidaric, Prosen, Prelovsek, PRB 77, 064426 (2008)  
Badarson, Pollmann, Moore, PRL 109, 017202 (2012) 

▸ Log-growth of entanglement

Kim, Chandran, Abanin, arXiv:1412.3073 
Eisert, Osborne, Phys Rev Lett 97, 150404 (2006)

▸ “l-bit Hamiltonian” in terms of quasi-local com
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Huse,  Nandkishore, Oganesyan, Phys  Rev B 90, 174202 (2014) 

Friesdorf, Werner, Goihl, Eisert, Brown, NJP 17, 113054 (2015)  
Chandran, Carresquilla, Kim, Abanin, Vidal, PRB 92, 024201 (2015) 

Brown, Goihl, Werner, Eisert, im preparation 
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▸ Slow information propagation
Kim, Banuls, Cirac, Hastings, Huse, PRE 92, 012128 (2015)  

Friesdorf, Werner, Goihl, Eisert, Brown, NJP 17, 113054 (2015)  

▸ Slow equilibration
Brown, Goihl, Werner, Eisert, im preparation 

Brown, Goihl, Werner, Eisert, im preparation 



MANY-BODY LOCALIZATION: INTERPLAY OF DISORDER AND INTERACTION

▸ “l-bit Hamiltonian” in terms of quasi-local com
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Huse,  Nandkishore, Oganesyan, Phys  Rev B 90, 174202 (2014) BUT HOW TO FIND L-BIT HAMILTONIAN?
Vosk, Altman, PRL 110, 067204 (2013) 
Rademaker, Ortuno, PRL 116, 010404 (2016) 
Pekker, Clark, Oganesyan, Refael, 1607.07884



▸ Want: Representation of Pauli algebra (mutually commuting)

▸ Commuting with Hamiltonian

NUMERICALLY FINDING L-BIT HAMILTONIANS

Goihl, Gluza, Krumnow, Eisert, Phys Rev B 97, 134202 (2018)  
Kulshreshtha, Pal, Wahl, Simon, arXiv:1707.05362



▸ Start from energy eigenbasis

▸ Find rationale to permute                                        ,                

{|ei}

|ki = {|⇡(e)i}, ⇡ 2 SD D = 2L!

Goihl, Gluza, Krumnow, Eisert, Phys Rev B 97, 134202 (2018)  
Kulshreshtha, Pal, Wahl, Simon, arXiv:1707.05362

NUMERICALLY FINDING L-BIT HAMILTONIANS



▸ Start from                                 , taking form Z(1) = �z ⌦ 12L�1 Z(1) = 12L�1 � (�12L�1)

▸ Order             so that diag of infinite time average  
 
 
is ordered decreasingly 

|⇡1(e)i

�(1)
z (t) =

X

e

he|�(1)
z |ei|eihe|

▸ Next                                                                                , order  
so  that        is ordered decreasingly

Z(2) = 12L�2 � (�12L�1)� 12L�2 � (�12L�1) |⇡2 � ⇡1(e)i
�(2)
z

▸ Etc
Goihl, Gluza, Krumnow, Eisert, Phys Rev B 97, 134202 (2018)  
Kulshreshtha, Pal, Wahl, Simon, arXiv:1707.05362

NUMERICALLY FINDING L-BIT HAMILTONIANS



Goihl, Gluza, Krumnow, Eisert, Phys Rev B 97, 134202 (2018)  
Kulshreshtha, Pal, Wahl, Simon, arXiv:1707.05362

▸ Gives surprisingly good energies
▸ Orthogonalize Hamiltonian to l-bit form

▸ Decay in        -norm, can see phase transition exploring support k.k2

▸ Iterated can be made tensor network (at expense of small errors)

NUMERICALLY FINDING L-BIT HAMILTONIANS



▸ Lesson: Can obtain l-bit Hamiltonians to good  
precision with simple method

NUMERICALLY FINDING L-BIT HAMILTONIANS



MANY-BODY LOCALIZATION

With Gross, Bloch, Goihl, Gluza, in preparation

▸ Cold atomic quantum simulations of many-body localization

Schreiber, Hodgman, Bordia, Lueschen, Fischer, Vask, Altman, Schneider, Bloch, Science 349, 842 (2015) 
Choi, Hild, Zeiher, Schauss, Rubio-Abadal, Yefzah, Khemani, Huse, Bloch, Gross, Science 352, 1547 (2016)  

HOW TO UNAMBIGUOUSLY MEASURE MBL?



MANY-BODY LOCALIZATION

With Gross, Bloch, Goihl, Gluza, in preparation

▸ In-situ and parity-projected density-density correlations

f
Corr

(k, t) = |hnL/2nL/2+ki � hnL/2ihnL/2 + ki|
y
Corr

(k, t) =
X

k

f
Corr

(k, t)k2

feq(T ) =
1

T

TZ

0

d⌧ |hpii0(t)|
▸ Lesson: Building on l-bit intuition, can devise feasible 

witnesses of MBL discriminating from Anderson localization



TOWARDS QUANTUM ADVANTAGES
Phys Rev X 8, 021010 (2018)  
Quantum 2, 65 (2018) 



QUANTUM SIMULATORS SHOWING A QUANTUM ADVANTAGE

▸ Quest for quantum advantage of quantum devices 

▸ Quantum simulators already outperform state-of-the art algorithms

Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert,  
Bloch, Nature Physics 8, 325 (2012) 

Braun, Friesdorf, Hodgman, Schreiber,  
Ronzheimer, Riera, del Rey, Bloch, Eisert,  
Schneider, Proc Natl Acad Sci 112 3641 (2015)  
Choi, Hild, Zeiher, Schauss, Rubio-Abadal, Yefzah,  
Khemani, Huse, Bloch, Gross, Science 352, 1547 (2016)  LACK OF IMAGINATION?



QUANTUM SIMULATORS SHOWING A QUANTUM ADVANTAGE

▸ IBM/Google: Intermediate problems for superconducting qubits

▸ But: No efficient discrimination from classical devices

▸ Boson sampling: Outperforms classical computers in terms of  
computational complexity

HOW CAN ONE EVER BE SURE  
THAT THEY DO THE RIGHT THING?

Aaronson, Arkhipov, Th Comp 9, 143 (2013)  
Boixo, Isakov, Smelzanski, Babbush, Ding, Jiang, Bremner, Martinis, Neven, arXiv:1608.00263 (2016)



QUANTUM SIMULATORS SHOWING A QUANTUM ADVANTAGE

▸ Devise cold atomic simulators showing a quantum advantage

▸ Prepare product state
▸ Evolve for unit time under local Ham
▸ In-situ measure

▸ Gives computationally hard intermediate problem: Sampling 
is computationally hard up to an additive error in the  
total variation distance for a classical computer, but…

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)  
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



QUANTUM SIMULATORS SHOWING A QUANTUM ADVANTAGE

▸ Devise cold atomic simulators showing a quantum advantage

▸ … it can be efficiently certified  
     (with local measurements)

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)  
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



This talk

SUMMARY

Quantum simulators

Quenched systems 
GaussifyETH implies  

equilibration New windows 
into quantum simulators

Quantum simulators 
probing MBL Quantum simulators 

can outperform classical ones 


